
Minds EyeTM semantic engine from Oracle

The Minds EyeTM semantic engine from Oracle

Page 1 of 19 Copyright © 2009 DSSlab All rights reserved

Minds EyeTM semantic engine from Oracle

Table of contents

Architecture overview... 3
Logical foundations of the Minds EyeTM semantic engine from Oracle.......................... 11

Introduction... 11
Types... 12

Constructs ... 13
Ordering Relationships ... 14
Operators... 14

The decision tree of emerging types ... 15
Novel attributes of the Minds EyeTM typing System .. 16

Ontology-free representations... 16
No unnecessary hardwiring of structural distinctions... 17
Solves significant problems in the foundations of logic, mathematics and language
... 17

Guide to appendices.. 19

Page 2 of 19 Copyright © 2009 DSSlab All rights reserved

Minds EyeTM semantic engine from Oracle

Architecture overview

For the purpose of solving many semantic data management problems, Oracle’s strong
support for industry standard semantic representations (and their manipulations) is a
necessary addition to the Oracle database. However, standard semantic representations
are not sufficient for solving problems that require a semantic extraction or interpretation
process in order to merge1 so-called “unstructured” input data with the “structured”
data already residing in the database. This is especially true in the field of medical
imaging.

In order to better understand the problem that is solved by the Minds EyeTM Oracle
semantic engine, it will be helpful to introduce a few concepts and clarify a number of
misleading industry standard terms.

Consider first the pair of industry-standard terms “unstructured” and “structured”. The
implication that there is more structure in structured data than in unstructured data is
untrue.

 A better way to think about the distinction implied by the use of these two words is in
terms of the relationship between

 the structures explicitly represented (and thus queryable) at the time the
information is captured and

 the structures in terms of which the information’s users would like to query.
If the query structures are the same as or a subset of the capture structures, the
information is explicitly structured (or simply “structured”- in industry terms).

For example, classic relational and so-called semantic data are both captured and queried
in terms of tables and fields, and triples. Such information is thus “explicitly structured”.
In contrast, a scan of an X-ray captures only grey scale values in an XY grid. If all that
users wanted to know was the grey scale value at some combination of XY locations, the
image data would be explicitly structured for that purpose. But this is not what people
want to know. They want to know whose X-ray is it? Was it diagnostic of anything?
Who ordered the X-ray? Where was it taken? Was this image a human-detectable
duplicate scan (quite different at a pixel level) of any other image in the system? Or was
it perhaps a significantly different near duplicate in the sense that it covers the same
anatomical region as does another image for the same person except that this new image
shows a tumor where none had been before?

Not only are scans of medical records implicitly structured, but they are frequently
“multi-structured” as well. Information is multi-structured when a single unit of data

1 The term “merge” is more appropriate than “update” because new information may link in numerous
ways to the combination of data and definitions that exist in the database.

Page 3 of 19 Copyright © 2009 DSSlab All rights reserved

Minds EyeTM semantic engine from Oracle

input such as a file may contain multiple different kinds of information each requiring a
distinct semantic interpretation process. For example, a scan of an X-ray that contains
textual information such as the name of the patient, the name of the hospital and a date,
would be an example of multi-structured information. The X-ray image is one kind of
structure requiring one kind of interpretation process; the embedded text is another. If
there were a handwritten note on the image, that would be yet another. . A spreadsheet
where clues about the meanings of terms were indicated by fonts would be another
example. Since there are no key words or headers or meta tags telling the semantic
engine how to interpret the information, the engine must discover how to do so on its
own.

From the perspective of the ever growing catalog or library of what is known by the
semantic engine, information and thus required representations for that engine need to be
“multi-modal”. This means that the same piece of understanding, such as a diagnostic
condition for a person, may be physically represented in a number of different ways: an
MRI, an X-ray, a doctor’s report. Even just words alone as physical representations, may
constitute different physical representations: be they different terms such as myocardial
infraction vs heart attack or different languages such as crise cardiaque in French.

Ultimately, an entry in the library/catalog such as “at risk of stroke” may be inferred
from the presence of multiple physical representations such as blood reports, tissue
samples, antigen presence and MRI. In other words, it may be a combination of multiple
physical representations realized over time and space that signals the presence of a single
more abstract condition or event.

Thus, from a high level, as illustrated in figure 1 below, the Minds EyeTM semantic
engine from Oracle transforms implicitly multi-structured information via a multi level
multi-modal library into explicitly structured information capable of being queried,
manipulated and managed through understood structured interfaces such as SQL, and of
being merged into the Oracle DB.

Figure 1. High level view of the Minds Eye semantic engine from Oracle

Structured Unknown

We would call any software capable of performing the appropriate transformations a
semantic engine. It should also be noted that any software that warrants being called a
semantic engine also needs to support logical inferences and computations. The process
of semantic interpretation depends on a huge amount of inferencing and computational

Sou e rc
neve t

Minds Eye interpretatio

Structure

Oracle Semantic

Page 4 of 19 Copyright © 2009 DSSlab All rights reserved

Minds EyeTM semantic engine from Oracle

brawn. In other words, to be a semantic engine is to be a logical-semantic-computational
engine.
For any new piece of information, the major findings of the semantic engine include:

 The new piece of information is an effective duplicate of something already in the
database. When this is the case, the engine will further attempt to determine
which duplicate is of higher quality

 The new piece of information is a new form for something already known such as
a new written diagnoses or a new diagnostic images for a known condition

 The new piece of information contains new attributes for individuals already
known such as new diagnoses or new address information for a known individual

 The new piece of information is a known attribute such as a diagnostic image for
a new – unknown- individual

 The new piece of information has no discernible structure beyond its capture
structure

Let’s drill down now to gain a better understanding of how that occurs. As illustrated in
figure 2 The Minds EyeTM Oracle semantic engine consists of six major components:

1. An initial capture zone
2. An active retention window
3. An extensible semantic interpreter
4. A pending interpretation zone
5. An interpretation library and a
6. Structured interface

Page 5 of 19 Copyright © 2009 DSSlab All rights reserved

Minds EyeTM semantic engine from Oracle

Forms

Pending
interpretations

Interpretation Library

Symbol layer ‘SL’

Type/domain layer ‘TL’

Homogeneous structure layer ‘Hmstr’

Heterogeneous structure layer ‘Htstr’

Multi structure layer ‘MSL’

SL

TL

Hmstr

Htstr

MSL

Figure 2 Overview of the Minds Eye semantic engine from Oracle

Confidential Information
Copyright © 2009 DSSlab
Al rights reserved

Source event

?

Active retention
window

Initial
capture

Extensible
Semantic interpreters

root S
tructured interface

image

Handwriting

print

As illustrated in figure 3 below, every time something new and unexpected enters the
system, the root interpreter goes through a set routine to figure out the kind(s) of
information that may be contained. Depending on the outcome of that process, any
number of specific semantic interpreters such as forms, images and/or text may be
invoked independently or in unison; and on any subset of the initial information..

Each structure-specific interpreter works across a number of different levels of
interpretation and receives feedback from the library where appropriate. The process is
geared to work with partial information. The final product of each of these semantic
interpreters is a tentative interpretation.

Page 6 of 19 Copyright © 2009 DSSlab All rights reserved

Minds EyeTM semantic engine from Oracle

Forms

Pending
interpretations

Interpretation Library

Symbol layer ‘SL’

Type/domain layer ‘TL’

Homogeneous structure layer ‘Hmstr’

Heterogeneous structure layer ‘Htstr’

Multi structure layer ‘MSL’

SL

TL

Hmstr

Htstr

MSL

Figure 3 Overview of the Minds Eye semantic engine from Oracle

Confidential Information
Copyright © 2009 DSSlab
Al rights reserved

Source event

?

Active retention
window

Initial
capture

Extensible
Semantic interpreters

root S
tructured interface

image

Handwriting

print

As shown below in figure 4, predominantly bottom-up interpretations from the semantic
interpreters interact in the pending interpretation zone with the predominantly top-down
interpretations from the library to form a final interpretation that is then merged into the
library. Links are retained that associate the library definition(s) with the locations of the
relevant source events.

Page 7 of 19 Copyright © 2009 DSSlab All rights reserved

Minds EyeTM semantic engine from Oracle

Pending
interpretations

Interpretation Library

Symbol layer ‘SL’

Type/domain layer ‘TL’

Homogeneous structure layer ‘Hmstr’

Heterogeneous structure layer ‘Htstr’

Multi structure layer ‘MSL’

SL

TL

Hmstr

Htstr

MSL

Figure 4 Overview of the Minds Eye semantic engine from Oracle

Confidential Information
Copyright © 2009 DSSlab
Al rights reserved

Source event

?

Active retention
window

Initial
capture

Extensible
Semantic interpreters

root S
tructured interface

image

Handwriting

print

Forms

As shown in figure 5 below, the merging of new interpretations into the library may set
off any of a number of conditioned responses from alerting an analyst to the possible
presence of a duplicate to the discovery that an image appears to belong to a specific
serviceman or that an image scanned in as if belonging to a particular service person
most likely belongs to someone else.

The library encodes all logical structures and their probabilistic positional and
resolutional linkages from single values to the largest application that has been seen and
is capable of being recognized.

The main logical/semantic library levels are

 Type
 Homogeneous Structure
 Heterogeneous structure
 Multi-structure

Page 8 of 19 Copyright © 2009 DSSlab All rights reserved

Minds EyeTM semantic engine from Oracle

Pending
interpretations

Interpretation Library

Symbol layer ‘SL’

Type/domain layer ‘TL’

Homogeneous structure layer ‘Hmstr’

Heterogeneous structure layer ‘Htstr’

Multi structure layer ‘MSL’

SL

TL

Hmstr

Htstr

MSL

Figure 5 Overview of the Minds Eye semantic engine from Oracle

Confidential Information
Copyright © 2009 DSSlab
Al rights reserved

Source event

?

Active retention
window

Initial
capture

Extensible
Semantic interpreters

root S
tructured inte

rface
image

Handwriting

print

Forms

The library manages so-called language objects, such as spreadsheet references, in the
same fashion as so-called physical objects such as image patterns.

For example, in the same way that the system may recognize a physical scene to be

(
instance square of type “Closed segment series” joined under to
instance triangle of type “Closed segment series”
) adjacent to
instance circle of type “Closed segment series”
=>

instance “house and sun” of structure “group of closed segment series”

The system could recognize a language scene to be

(
instance January of type “Time” joined intra locator tuple with
instance Cambridge of type “Store”
) joined 1-1 with
Content Instance 500 of type “Sales” unit “Dollars”
=>

instance “January, Cambridge, 500 dollars” of structure named “Sales
Model”

Page 9 of 19 Copyright © 2009 DSSlab All rights reserved

Minds EyeTM semantic engine from Oracle

Finally, as shown in figure 6, below, new interpretations (with or without their triggered
consequences), are exported as structured data to the Oracle database. Where
appropriate, and by leveraging the structured interface users, of the semantic engine can
directly query and explore the data as it is being interpreted by the semantic engine.

To Oracle DB

Pending
interpretations

Interpretation Library

Symbol layer ‘SL’

Type/domain layer ‘TL’

Homogeneous structure layer ‘Hmstr’

Heterogeneous structure layer ‘Htstr’

Multi structure layer ‘MSL’

SL

TL

Hmstr

Htstr

MSL

Figure 6 Overview of the Minds Eye semantic engine from Oracle

Confidential Information
Copyright © 2009 DSSlab
Al rights reserved

Source event

?

Active retention
window

Initial
capture

Extensible
Semantic interpreters

root

Explicitly
structured

interpretation

S
tructured interface

image

Handwriting

print

Forms

Page 10 of 19 Copyright © 2009 DSSlab All rights reserved

Minds EyeTM semantic engine from Oracle

Logical foundations of the Minds EyeTM semantic engine
from Oracle
The Minds Eye semantic engine from Oracle is grounded in a highly advanced typing
system developed over a twenty five year period and stress tested in many world class
domains from international financial institutions, enterprise information systems, and
seismic analysis to integrated socio-economic-environmental modeling.

Provisional patents have been filed and utilities are in the process of being filed to cover
all novel aspects of the Minds Eye semantic engine including:

o Semantic understanding of spreadsheets
o Multi-modal “object” recognition
o Term extraction from NL text
o Segment extraction from images
o Object, surface and

segment extraction
from tactile sensations

Introduction

The power of both the Minds Eye library and the Minds Eye semantic interpreter follow
directly from the power of the underlying typing system which provides all the
capabilities of logic, language and mathematics (and obviating their known
inconsistencies) within a single compact extensible system.

The major constructs of the typing system are that of
 Types (or Domains) as collections of instances of some unit or collection of related

units (where units themselves are a role played by a type), with orderings and
potential operators associated with those values,

 Schemas as particular collections of functionally related Types capable of supporting
the definition and execution of expressions.

 Expressions as particular collections of inter-related types that exist relative to some
implicit or explicitly defined schema in both an exchanged and an executable form.

For example, the popular notions of number system, dimension, hierarchy, measure,
attribute, variable, data type, network, directed graph, (possible subject and possible
predicate in the natural language sense of these terms), and (possible function and
possible argument in the predicate logical sense of these terms), may be thought of as
specializations of the more general notion of Type.

Furthermore, for example, the popular notions of model, (world -as in possible worlds),
multidimensional hypercube, multidimensional multi-cube, Relation, Class diagram,
frame, script, system of equations, shape file, process, application and program may be
thought of as specializations of the more general notion of Schema.

Page 11 of 19 Copyright © 2009 DSSlab All rights reserved

Minds EyeTM semantic engine from Oracle

Within the Minds Eye typing system, expressions are (the thing that, or), what does
things relative to types and schemas. For example, expressions

 Assert and question propositions
 Specify and execute calculations
 Modify schemas
 Create new schemas
 Modify non-primitive Types
 Question any aspect of a type
 Create new non-primitive Types and
 Create new primitive Types

The Type system primitives are composed of “constructs”, “ordering relations” and
“operators”.

Since operators are constrained by the constructs and orderings within the types to which
they apply, and since all expressions are defined in terms of types (or other expressions
which at some point are defined in terms of types), the limits of intelligible expressions
are determined by the type system in place at the time of the existence of the expression.
Of course, those limits may vary over time and between spatially differentiated systems.

Seemingly higher level concepts like trust, logical state and want are naturally defined in
terms of second order expressions i.e., expressions that take other expressions as
arguments and function as subsystems within the overall MINDS EYE System.

Finally, all explicitly cognitive processes or competencies are defined in terms of systems
of schemas wherein schemas may exist in any kind of relation with other schemas
(including M-to-N), and wherein expressions in some schemas may query, edit, activate
or deactivate other schemas.

Types

Types are akin to a generalized form of number system2. They include some notion of
valid or potential values, some notion of valid operations and some other stuff that will be
described below. Suffice it to say that any understanding of types begins with an
understanding of their composition or primitive components.

Before launching into a detailed description of the MINDS EYE System’s primitive type
components, or simply primitives, it is important to understand how these primitives
relate to each other.

2 Depending on the reader’s background, the closest points of reference are Type Theory or Category Theory

Page 12 of 19 Copyright © 2009 DSSlab All rights reserved

Minds EyeTM semantic engine from Oracle

The three type components, namely constructs, ordering relationships and operators are
each projections of a single underlying unity. The token-based separateness of such
seemingly distinct notions as, for example, “word”, “addition”, and “hierarchy” masks a
deeper unity. The purpose of the following section is to point towards that unity.

Constructs

The major constructs in any model are the primitive linguistic objects that enter into
relations with other linguistic objects. All expressions made within a model are in terms
of the constructs of that model. For OLAP models, the major constructs include that of
Dimension, Measure, attribute, cube and instance. In the MINDS EYE System the major
constructs include the notion of Type and Type Structure. And within Types there are the
notions of unit and value. Although it is possible to write or say the term “Type” or
“Type Structure” or “Unit” or “Value” independent of uttering any other term, it is not
possible to define any one term absent referring to some other term. For example, any
definition of the term “Type” would need to make reference to the terms “Unit” and
“Value”.

One of the basic characteristics of a Type is that it must define some set of potentially
usable values, called potential values. A “Sales” Type might be defined as a dollar value
greater than or equal to zero. A “Product” Type might be defined as any 8 Byte Char.
Regardless of what kind of Type is defined, there is an implicit assumption that the
values of the Type are distinguishable. The Sales value “$100” is not the same as the
Sales value “$150”. The Product value “Shoes” is not the same as the Product value
“Hats”. If values could not be distinguished, Type definitions would be impossible. Yet,
the notion of value comparisons and of equality, is not itself a construct. Rather the
notion of value comparisons is a primitive operator or function. Thus, the specification
of primitive constructs presupposes a well defined notion of primitive operators.

Another basic characteristic of a Type is that it must be possible to traverse its potential
values. There need not be a sequential ordering as there is for numeric series, but there
must be some way to move from value to value. If the potential values of a Type could
not be traversed, it would be impossible to call a function that changed the value of a
Type based on some condition. For example, the ability to add $5 to the current value of
$20 of a Dollar Type that represents an hourly wage presupposes that the value $20 is
connected to the other dollar values of the Type so that it can be incremented by $5 to
yield $25. As such, the specification of primitive constructs presupposes a well defined
notion of primitive ordering relationships.

Thus, the primitive constructs of a model/system presuppose specified ordering
relationships, and functions in addition to other primitive constructs.

Page 13 of 19 Copyright © 2009 DSSlab All rights reserved

Minds EyeTM semantic engine from Oracle

Ordering Relationships

Every Ordering Relationship presupposes both the constructs that are ordered, as well as
the constructs used to specify the ordering relationship (typically integer values as in the
expression “1 to N”). Furthermore, every Ordering Relationship is expressed in terms of
a particular function, namely the function that traverses from one construct in the
ordering relationship to another. In other words, in a hierarchical ordering expression of
the form “1 to N” the word “to” masks an implicit function, namely that traversing from
the “1” to the “N” requires a single step or unit delta in the down hierarchy direction.
While traversing from any “N” to the “1” requires a single step or unit delta in the up
hierarchy direction.

Thus the specification of Ordering Relationships presupposes the existence of both
constructs and functions.

Operators

Consider an operator as seemingly primitive as comparative equality or “=3”. We might
say, for example, that Sales = Costs. But can we define the operator “=” absent
referencing constructs and Ordering Relationships? Here again, we can not.

For example, any definition of the equality operator would need to reference those
Constructs whose equality is being tested or asserted. In addition, there is an implicit
Ordering Relationship in the equality operator, namely that of “1 to 1”. In other words,
and continuing with the example above, one value of Sales is equal to one value of Costs.
If there were more or less than one value from each of the two Constructs, the operator
would not work as defined.

Thus, the specification of Operators, like Ordering Relationships and Constructs,
presupposes the existence of the other primitive concepts as a part of their very
definition!

3 Though in most programming languages “=” denotes assignment and “==” denotes comparison

Page 14 of 19 Copyright © 2009 DSSlab All rights reserved

Minds EyeTM semantic engine from Oracle

The decision tree of emerging types
Treating the general constraints as the first node in a classification tree, we can describe
the main kinds of types in terms of the following unit relationships.

1.2.3.1.1 1.2.3.1.2 1.2.3.2.1 1.2.3.2.2 1.2.3.2.3 1.2.3.2.4

1.2.3.1 1.2.3.2 1.2.3.3

1.2.21.2.1 1.2.3

1.1 1.2

1. Any Type must have two or more potential values.

2. There must be at least one unit to which at least two potential values belong.

3. Every potential value must be uniquely identifiable and exclusively ORed with every other.

4. Every potential value must be connected to every other.

Constraints on a Type

KEY

 1.1 If any of these constraints are not met by a Type, that Type is
invalid

 1.2 If all the constraints are met, and the Type has only one unit,
the Type is a classic mono-level Type of the kind postulated in
the Relational model and Date's more recent third manifesto.

 1.2.2 If the Type has only one unit and only two potential values, it
is typically called a Boolean.

 1.2.1 If the Type has more than one unit and the units are not all
connected, the Typeis invalid.

 1.2.3 If the Type has more than one unit and the units are
fully connected then there are a wide variety of valid
Types that might be defined depending on the logical
connectives thatjoin the units.

 1.2.3.1 ANDed units

 1.2.3.2 ORed units

 1.2.3.1.1 Specifically, if the units are all ANDed together,
and there exists some functional relationship betweeen the
units as there does, for example between distance, time an
speed, the Type and whatever units(s) is(are) deemed
dependent are compount.

 1.2.3.3 AND/OR mixture

 1.2.3.1.2 If the units are ANDed together and there does not
exist any functional relationship between the units as there
does not, for example between a product name and SKU,
the Type and the collection of units are considered to be
concatenated.

 1.2.3.2.3 If the units are all ORed together and the translation
function between them defines a set of network-style
connections the set of units forms a peer-to-peer unit set.

 1.2.3.2.2 If the units are all ORed together and the
translation function between them defines a single unit
relative to which all other units are defined, the set of units
forms a hub and spoke unit set.

 1.2.3.2.1 If the units are all ORed together and they
translation function between them defines a partial ordering
on the set of units, the set of units forms a hierarchy.

 1.2.3.2.4 If the units are all ORed together and the translation
function between them defines a set of hierarchical units
nesterd within a peer- to- peer unit set, the Type is considered
to have a unit set. The unit relationships between the British
system of pound weights and the Metric system of weights has
this form.

C
on

st
ra

i
nt

s
on

an
y

ty
pe

E
m

er
gi

ng
pr

op
er

tie
s

ba
se

d
on

lo
gi

ca
l u

ni
t

re
la

tio
ns

hi
ps

Page 15 of 19 Copyright © 2009 DSSlab All rights reserved

Minds EyeTM semantic engine from Oracle

Novel attributes of the Minds EyeTM typing System

Ontology-free representations

The notion of Type as an underlying collection of possible values obviates the need for
the ontological commitments and associated modeling conundrums that affect ER, OO,
RDF/OWL, and other approaches whose primitive modeling constructs are intended to
represent certain things in the world. Rather, Types are a model of the language
requirements for representing the world, not a model of the world. As such, nothing is
claimed to be a Type.

Processes can be modeled as Types in the same way as objects. The process steps are
captured as a location structure to which arbitrary measures may apply as contents. The
notion of ordinal Time is built in to the process Type. Calculations of relative process
concurrency are directly supported. Processes can spawn sub-processes and can be rolled
up into higher level process abstractions. In short, processes and objects are just different
specializations of type. sophisticated process modeling is directly supported in the
MINDS EYE Model.

Types can be as easily used to define a (complex) data source in terms of a large
collection of simple Types between which many complex relationships exist, or in terms
of a smaller number of more complex Types between which a smaller number of simpler
relationships exist. The line between intra-Type modeling and inter-Type modeling is
dependent on the subjective determination of where to define linguistic surfaces. This
representational flexibility is crucial because the same objective reality or set of data
sources can be legitimately interpreted in any number of ways

Since Type Structures can easily embed in other Type Structures, the MINDS EYE
Model directly supports nested and dynamic schemas.

Since the definition of a Type or Type Structure can vary between uses and since
equivalency relationships can be established between any Types that share at least one
primitive Type, the Minds Eye typing system directly supports the ability for multiple
users to collaborate by dynamically linking their personal views with a common
underlying model or by linking their models.

The combination of flexible representation, general equivalency mappings and nested
ordering relationships supports very powerful and general semantic mapping.

The combination of ordering relationships and representations supports representational
intelligence. See the appendix on “the Application of Type language to the Semantic
Description of visual forms”.

Page 16 of 19 Copyright © 2009 DSSlab All rights reserved

Minds EyeTM semantic engine from Oracle

No unnecessary hardwiring of structural distinctions

Not only does the Minds Eye typing system eliminate the artificial boundaries between
notions of object and process, it also eliminates a number of other arbitrary structural
distinctions whose hard-coded embedding within information systems has hindered the
ability of those systems to tackle complex recognition problems.

It is interesting to note that there is a tendency to treat general distinctions as referential
or objectively classifying. This was true for Aristotle with his distinctions between
substance and property as well as subject and predicate in his “Categories of
Interpretation”. This was true for Frege in the “Begriffshrift” with his logical distinction
between function and argument. And this has certainly been true in the software industry
with such distinctions as

 Data/metadata
 Context/object
 Dimension/measure
 Class/attribute/association

The problem is that these distinctions are not referential but rather functional, or use-
specific. For example, a piece of information that may serve as so-called metadata in one
context, say the information’s author or time of creation, may serve as data for a different
process such as a study of who has created what. Information such as time may serve as
an organizing dimension in one context and a variable in another.

Solves significant problems in the foundations of logic, mathematics
and language

 Provides a mechanical grounding for logic:
 propositional, predicate (other, semantically enriched logics such

as mereology, temporal logic, modal logic)
 Does not suffer from paradox: Liar, Grellings, set of all

sets,
 Exhaustive, mechanically implemented method for

processing all kinds of ill-formed expressions without
resorting to multi-valued logics and the operational
ambiguities they entail

o Provides a mechanical definition of well-
formedness that exactly specifies the conditions for
meaning

 Provides a mechanical grounding for mathematical number systems:
 Naturals, Integers, Rationals, Reals, Complex, Vectors, Matrices,

Tensors, Directed Graphs, Networks

Page 17 of 19 Copyright © 2009 DSSlab All rights reserved

Minds EyeTM semantic engine from Oracle

 Provides novel, consistent accountings of
o Irrationals,
o so-called “infinite sets”,
o the definition of “number” itself,
o the definition of “unit”

 Provides a novel consistent accounting of the relationship
between Euclidian and non-Euclidian spaces

o In terms of compound unit/metrics
o Showing certain number system problems to be

rather coordinate system differences

 Provides a mechanical grounding for language:
 Human, other animal, machine

 Replaces “part-of-speech” taxonomy for parsing human
language with “type role”

o Thus integrating deep linguistic structure and
knowledge/understanding

o Provides a mechanical definition of well-
formedness that exactly specifies the conditions for
meaning

o Distinguishes the constraints for well-formedness
between exchanged forms and compiled forms of
expressions

 Accounts for what is known of other species languages and
machine languages

 Provides a mechanism for creating the sensory-motor
schema that may get used for parsing symbolic expressions

Page 18 of 19 Copyright © 2009 DSSlab All rights reserved

Minds EyeTM semantic engine from Oracle

Page 19 of 19 Copyright © 2009 DSSlab All rights reserved

Guide to appendices

There are six appendices to this document.

 Appendix one is a condensed/truncated but detailed version of the typing system
upon which the Minds Eye semantic engine is grounded

 Appendix two is an application of the typing system to the semantic
characterization of visual forms used for analytical visualization. It has served as
the basis for automating the selection of visual displays so that the semantics of
the display match the semantics of the query. The material is excerpted from
chapter 9 of OLAP Solutions 2nd edition by Erik Thomsen.

 Appendix three is a comparison of the Minds Eye typing system with the
foundations of canonical mathematics

 Appendix four is a comparison of the Minds Eye typing system with the
foundations of canonical logic

 Appendix five is a comparison of the Minds Eye typing system with canonical
logic as relates to material implication across multi leveled information spaces

 Appendix six is an illustration of how the Minds Eye typing system escapes the
set of all sets paradox

Please note that the technical name for the typing system is the LC model, a term that will
be found repeatedly in the appendices. The abbreviation stands for Located Contents and
refers to the Tractarian (as in the Tractatus-Logico-Philosophicus by Ludwig
Wittgenstein) -inspired functional as opposed to referential approach to foundational
issues.

	Architecture overview
	Logical foundations of the Minds EyeTM semantic engine from Oracle
	Introduction
	Types
	Constructs
	Ordering Relationships
	Operators

	The decision tree of emerging types
	Novel attributes of the Minds EyeTM typing System
	Ontology-free representations
	No unnecessary hardwiring of structural distinctions
	Solves significant problems in the foundations of logic, mathematics and language

	Guide to appendices

